

PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD:	ARK	SHEET: 1 OF 20

Window Installation Analysis

QUAKER WINDOWS & DOORS
C600/C605 One Tone Casement Windows
C600/C605 Two Tone Casement Windows
W600/W605 Wood Two Tone Casement Windows

Report Q5070.01-122-34

Rendered to:

Quaker Windows & Doors P.O. Box 128 504 Highway 63 South Freeburg, MO 65035

Prepared by:

Tanya A. Dolby, P.E. Adam Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700

October 17, 2023

Tanya A. Dolby, P.E. Manager, Engineering Services Adam Kunkel Project Engineer

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE: 10/17/23
Casement windows	DI. IAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 2 OF 20

Scope

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Window & Doors to perform installation analysis for C600/C605 and W600/W605 Casement Windows on test report L0630.01-801-47-R5.

The analyses performed satisfy the methods and requirements of the following:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ADM-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AAMA TIR-A9-14 Design Guide for Metal Cladding Fasteners, Includes 2020 Addendum. American Architectural Manufacturers Association, 2014.

AISI S100-16(2020) North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition (Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 01/2023.

GANA Glazing Manual, 50th Anniversary Edition

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2018 Supplement. American Wood Council, 2018.

The calculations presented herein are for the integrity of the window installations based on wind load only. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report.

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE: 10/17/23
Casement Windows	bi. IAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 3 OF 20

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a
 financial interest in any company manufacturing or distributing products tested or
 labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE : 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 4 OF 20

Analyses

Summary of Test Results

The following table summarizes the C600/C605 and W600/W605 Casement Windows and the corresponding performance level established by testing.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
C600/C605 and W600/W605 Casement Window	L0630.01-801-47 (Revision 5, 08/16/23)	NI014355.01-R1	48" x 84"	+/- 70 psf

Testing documented in Table 1 was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

The specimen was secured to a 2x Spruce-Pine-Fir wood buck with #8 x 1-5/8" course thread wood/deck screws. The as-tested installation method is evaluated on page 8 and the established design capacity summarized in Table 2. Alternate anchorage is shown in Table 3 with on center spacings in Table 4 on page 6.

Table 2 As-Tested Anchorage Design Capacities

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#8 PH Wood Screw	86 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SPF

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 5 OF 20

Anchorage Requirements

#8 x 1-5/8" course thread wood/deck screws actual test anchor capacity based on tested spacing:

Punched Opening Anchor Reactions

Roark's Formulas for Stress & Strain (Sixth Ed.) Table 26-1a

Design Pressure 70.0 psf Anchor Spacing 15.0 inch

						Anchor Capacity for
	Width, w	Height, h			R	Specified Spacing
Window Mark	(inch)	(inch)	w/h	gamma	(lb/inch)	(lb)
L0630.01-801-47	48.00	84.00	1.75	0.497	11.61	174
	48.00	48.00	1.00	0.420	9.80	147

Calculated alternate anchors on the following pages are shown for 70 psf design pressure, #10 fasteners into wood and metal stud substrates.

The alternate anchorage conditions have design capacities which are comparable to or exceeds the least capacity of the as tested anchorage. All anchorage is installed 3" from corners and at the spacing calculated shown on pages 9 to 11 for 70 psf Design Load. Maximum shim space between the window frame and surrounding substrate is 1/4" for all conditions. Anchors must be fully shimmed and supported.

Glazing analysis for tested units is shown on pages 12 and 13. The glass Load Resistance was greater than or equal to the tested design pressures.

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD:		SHEET: 6 OF 20

Alternate Anchorage Capacities

Table 3 Alternate Anchorage Capacity – Nail Fin

Installation	Connection	Capacity	Comments
Nailing Fin to Wood	#10 PH Wood Screw	114 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SYP
Nailing Fin to Wood	#10 Round Washer Head Wood Screw	178 lb	 Limited by pull-over 1 ½" minimum penetration G = 0.55 Minimum SYP
Nailing Fin to Steel	#10 HWH TEKS Screw	128 lb	 Limited by pull-out Full penetration +3 threads Min 18 gauge 33 KSI steel

Required Anchor Spacing at 70 psf Design Pressure

Anchorage Requirements

Although the capacities of the alternate anchorages exceed the capacity of the as-tested anchorage, it must be determined the anchorages are not overloaded for the approved window size and design pressures. Calculations presented in pages 9 to 11 show required spacing for the evaluated anchorage conditions. Results are summarized in the following table.

Table 4 Nail Fin Anchorage Requirements

Substrate	Anchor	70 psf Ca 48" x Anchor	
		Jambs	Head/Sill
Nailing Fin	#10-13 PH Wood Screw	10	12
to Wood	#10-13 Round Washer Head Wood Screw	15	18
Nailing Fin to Steel	#10 TEKS Screw	11	13

If the spacing reported in Table 5 exceeds the as-tested spacing reported in Table 2, the as tested spacing of 15" on center maximum shall govern.

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE : 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 7 OF 20

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

- C600/C605 Casement One Tone Installation Instructions, 08-22-2023
- C600/C605 Casement Two Tone Installation Instructions, 08-22-2023
- W600/W605 Casement Wood Two Tone Installation Instructions, 08-22-2023

PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD:	ARK	SHEET: 8 OF 20

<u>As-Tested Installation – Nailing Fin to Wood Blocking</u>

#8 x 1-5/8" Pan Head Wood/Deck Screw (Non-Countersunk) $D_{ws} = (0.322" + 0.306")/2 = 0.314"$ (Nominal Screw Head Diameter) $D_{H} = 0.177"$ (Section 11.0, AAMA TIR-A9)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

14" maximum shim space

ASD Withdrawal

Withdrawal of #8 Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L) \\ W' = 2,850 (0.55^2)(0.164'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'') \\ W' = 142 lb$

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6 Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7 Temperature Factor - 100° F < T $\leq 125^{\circ}$ F, Ct = 0.7 End Grain Factor - No, Ceg = 1.00 Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #8 PH Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625") (30,000 \text{ psi}) (0.314" - 0.177") / 3.0 \\ P_{nov} &= 86 \text{ lb} \end{split}$$

Calculated Capacity of Connection is 86 lb

Actual Tested Capacity is 147 lb

Safety Factor = 147/86 = 1.7

Qualifies 10% Increase to Alternate Anchor Capacity Based on Tested Unit

PROJECT: QUAKER C600/C605 W600/W605		
Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 9 OF 20

1 - Alternate Installation - #10 Pan Head Wood Screw, Nail Fin to Wood

#10 Pan Head Wood Screw

 $D_{ws} = (0.373" + .0357")/2 = 0.365"$ (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

1/4" maximum shim space

ASD Withdrawal

Withdrawal of #10 PH Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L)$

 $W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'')$

W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6

Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7

Temperature Factor - 100°F < T ≤ 125°F, Ct = 0.7

End Grain Factor - No, Ceg = 1.00

Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 PH Wood Screw

 $P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.365" - 0.201")/3.0$

 $P_{nov} = 104 lb$

Calculated Capacity of Connection is 104 lb
Capacity of Connection at 10% Over is 114 lb (OK per Tested Capacity)

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET : 10 OF 20

2 - Alternate Installation - #10 Round Washer Head Wood Screw, Nail Fin to Wood

#10 Round Washer Head Wood Screw

 $D_{ws} = (0.500'' + .472'')/2 = 0.486''$ (Nominal Screw Head Diameter)

D_H = 0.201" (Nominal Hole Size, AAMA TIR-A9, Table 11.1)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.55 Minimum SYP 2x Wood Blocking

1/4" maximum shim space

ASD Withdrawal

Withdrawal of #10 Wood Screw

 $W' = 2,850(G^2)(D)(Cd)(Cm)(Ct)(Ceg)(Ctn)(L)$

 $W' = 2,850 (0.55^2)(0.190'')(1.6)(0.7)(0.7)(1.00)(1.0)(1.50'')$

W' = 192 lb

Adjustment Factors

Load Duration Factor - Ten Minutes, Cd = 1.6

Moisture Factor - Fabrication > 19% and In-Service > 19%, Cm = 0.7

Temperature Factor - $100^{\circ}F < T \le 125^{\circ}F$, Ct = 0.7

End Grain Factor - No, Ceg = 1.00

Toe Nail Factor - No, Ctn = 1.0

Pull-Over of #10 Round Washer Head Wood Screw

 $P_{\text{nov}} = C_{\text{pov}} t_1 F_{\text{tu}1} (D_{\text{ws}} - D_{\text{h}}) / 3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.486" - 0.201")/3.0$

 $P_{nov} = 178 \text{ lb}$

Calculated Capacity of Connection is 178 lb

PROJECT: QUAKER C600/C605 W600/W605		
Casement Windows		DATE: 10/17/23
PROJECT NO - 05070 04 433 34	CKD: ADK	CUEET: 44 OF 30
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 11 OF 20

3 - Alternate Installation – #10 HWH TEKS Screw, Nailing Fin to Steel Stud

#10 HWH TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" maximum shim space

Allowable Tension of #10-16 TEKS Screw

 $V_a = 885 lb$

(ESR-1976)

Pull-Over of #10 HWH TEKS Screw in Nail Fin

 $P_{\text{nov}} = C_{\text{pov}} t_1 F_{\text{tu}1} (D_{\text{ws}} - D_{\text{h}}) / 3.0$

 $P_{\text{nov}} = 1.0(0.0625")(30,000 \text{ psi})(0.400" - 0.190")/3.0$

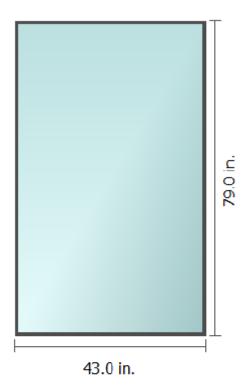
 $P_{nov} = 131 lb$

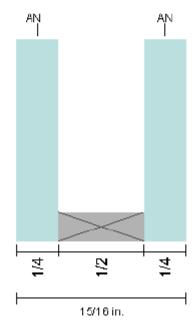
Pull-Out of #10 HWH TEKS Screw in Steel Stud

 $P_{not} = 0.85t_c dF_{u2}/3.0$

 $P_{\text{not}} = 0.85(0.0478")(0.190")(45,000 \text{ psi})/3.0$

 $P_{not} = 116 lb$


Calculated Capacity of Connection is 116 lb
Capacity of Connection at 10% Over is 128 lb (OK per Tested Capacity)



PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD:	ΔRK	SHEET: 12 OF 20

Glass Analysis

Test Reports L0630.01-801-47-R5

PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO : 05070 01-122-34	CKD.	ΔRK	SHEET: 13 OF 20

Analysis 1

Load Resistance Report

August 25, 2023

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Load Resistance

Short Duration (3 Sec)

Description	NFL	GTF	LSF	LR
Exterior Lite	39.0 psf	0.900	1/0.500	70.2 psf
Interior Lite	39.0 psf	0.900	1/0.500	70.2 psf

Comparisons

Scenario 1

70.0 psf 3.00 sec <= 70.2 psf OK

Approximate center of glass deflection

Exterior Lite 0.56 in.
Interior Lite 0.56 in.

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE : 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 14 OF 20

Anchorage Spacing Calculation

Punched Opening Anchor Reactions

Roark's Formulas for Stress & Strain (Sixth Ed.) Table 26-1a

Nail Fin Window Design Pressure: 70.00 Anchor

7		Anchor	Width, w	Height, h			R	Anchor Spacing
Substrate	Anchor	Capacity (inch)		(inch) w/h		gamma	(lb/in)	(in)
	#10 Wood Screw	114 lb	48.00	84.00	1.75	0.50	11.61	10"
Wood	#10 Wood Sciew	11410	48.00	48.00	1.00	0.42	9.80	12"
vvoou	#10 Round Washer Head Wood Screw	178 lb	48.00	84.00	1.75	0.50	11.61	15"
			48.00	48.00	1.00	0.42	9.80	18"
Steel	#10.16 TEVS	128 lb	48.00	84.00	1.75	0.50	11.61	11"
Stud	#10-16 TEKS	12010	48.00	48.00	1.00	0.42	9.80	13"

Anchor Spacing is limited to the least of the above calculated spacing or as tested spacing of 15" maximum on center.

PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
PROJECT NO : 05070 01-122-34	CKD.	ARK	SHEET: 15 OF 20

REFERENCE MATERIAL

#10-16 TEKS Screw References

TABLE 5-FASTENER STRENGTH OF SCREWS^{1, 2, 3, 4, 5}

SCREW	DIAMETER	ALLOWABLE FAST	TENER STRENGTH	NOMINAL FASTENER STRENGTH		
DESIGNATION	(in.)	Tensile, P _{ts} /Ω (lbf)	Shear, P _{ss} /Ω (lbf)	Tensile, Pts (lbf)	Shear, Pss (lbf)	
10-16	0.190	885	573	2654	1718	
12-14	0.216	1184	724	3551	2171	
12-24	0.216	1583	885	4750	2654	
1/4-14	0.250	1605	990	4816	2970	
1/4-28	0.250	1922	1308	5767	3925	

For SI: 1 inch = 25.4 mm, 1 lbf = 4.45 N.

TABLE 22.11 (Spaced Threads)

6063-T6													
Tronsition 5							num Thickness (Inches)						
Thread Diameter	Nominal Thread Diameter	0.038	0.060	0.072	0.080	0.094	0.125	0.156	0.188	0.250	0.312	0.375	
Per Inch	Allowable Pullout (Pounds)												
#8-18	0.1640	53	83	100	132	155	235	350	468	669	835	1004	
#10-16	0.1900	61	96	116	153	180	239	372	509	775	968	1163	
#12-14	0.2160		110	132	174	204	271	374	530	833	1100	1322	
1/4-14	0.2500		127	152	201	236	314	433	614	964	1273	1530	
5/16-12	0.3125								809	1334	1860	2296	
3/8-12	0.3750						ļ	-	971	1601	2232	2755	
	6063-Т6												
F _U (Tensile	e Ultimate	Strength)		30000	psi			Sł	nading indi	cates trans	sition regio	n.	
F _Y (Tensile	(Tensile Yield Strength) 25000 psi												

NOTE 32:

- Each table lists allowable pull-out (internal threads) values. S_F = 3.0 for D ≤ 0.25"; S_F = 2.5 for D ≥ 0.3125". Fastener allowable strength (basic tension and external threads) needs to be checked separately.
 For pilot hole sizes refer to tables 21.1 to 21.7
- Fastener pullout not shown for aluminum thickness less than approximately 2 threads, unless tested at a lesser thickness.
 Multiple fastener connections and embrittlement need to be checked separately.

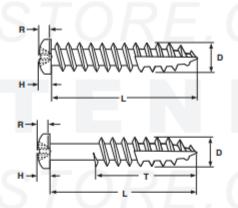
¹ For tension connections, the least of the allowable pull-out, pullover, and fastener tension strength found in Tables 2, 3, and 5, respectively, must be used for design.

²For shear connection, the lower of the allowable shear (bearing) and the allowable fastener shear strength found in Table 4 and 5, respectively, must be used for design.

assers. Section 4.1 for fastener spacing and end distance requirements. Nominal strengths are based on laboratory tests

⁵To calculate LRFD values, multiply nominal strength values by the LRFD Φ factor of 0.5.

PROJECT: QUAKER C600/C605 W600/W605		
Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 16 OF 20


Appendix

WOOD SCREWS

Pan Head w/ Phillips Recess

TYPE-17 DEEP THREAD

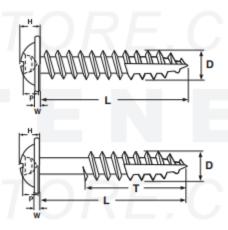
Nominal		A H		F	R M		D Major Diameter		T Threaded Length		Torque Kg/cm (Steel screws)	Recess Size	
Diameter & Threads	Head Diameter		Head Height		Recess Penetration Depth								Recess Diameter
per Inch	Max	Min	Max	Min	Max	Min	Ref	Max	Min	L≤1"	L>1"	Min	
6-13	0.270	0.256	0.097	0.087	0.080	0.055	0.159	0.142	0.131	Full thread	2/3 thread	21	#2
7-12	0.296	0.281	0.106	0.096	0.089	0.064	0.170	0.158	0.147	Full thread	2/3 thread	28	#2
8-11	0.322	0.306	0.115	0.105	0.097	0.071	0.175	0.169	0.159	Full thread	2/3 thread	37	#2
10-9	0.373	0.357	0.133	0.122	0.113	0.089	0.192	0.194	0.185	Full thread	2/3 thread	55	#2
12-8	0.425	0.407	0.151	0.139	0.124	0.098	0.252	0.230	0.213	Full thread	2/3 thread	64	#3
	Λ		Up t	o 5/8"						± 0.03			
Toleran	ce on	ce on Over 5/8 to 1.5"								± 0.05			
Leng	gth		Over 1.5	5 to 2.75	•					± 0.06			
			Over	2.75"		± 0.09							

Description	An externally threaded fastener with a dome-shaped head, cross recess and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final several threads end at the tip.								
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. Popular in fastening cabinet hardware in locations that do not require the head to countersink. The chip cavity (or auger point) are designed to attach hinges to the edge of hardwood face frames.	Used in environments where corrossion resistance is neccesary. The type-17 point enables the screw to more easily penetrate the material into which it's fastened. Can be used in particle board, wood and some plastics.							
Material	C1018 - 1022 case-hardened steel	18-8 Stainless Steel							
Surface Hardness	Vickers 450 HV minimum								
Case Depth	0.004" - 0.009"								
Torque	See values in above table								
Plating	See Appendix-A for plating information	Stainless deep thread screws are usually supplied without additional finish.							

PROJECT: QUAKER C600/C605 W600/W605
Casement Windows
BY: TAD DATE: 10/17/23

PROJECT NO.: Q5070.01-122-34

WOOD SCREWS


SHEET: 17 OF 20

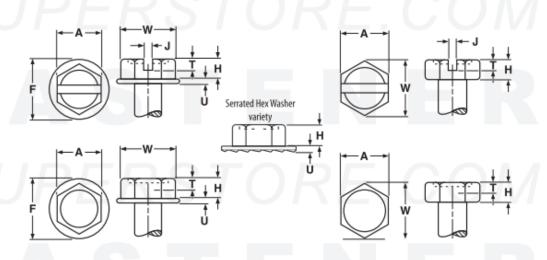
CKD: ARK

Round Washer Head w/ Square/Phillips Combo Recess

TYPE-17 DEEP THREAD

	- I / A		В		1		•	V	V)	1		Recess
Nominal Diameter		Washer Diameter		Total Head Height		Recess Depth		Washer Thickness		Major Diameter		Threaded Length		Size (Square & Phil-
	Max	Min	Ref	Max	Min	Max	Min	Max	Min	Max	Min	L≤1"	L>1"	lips)
8	0.376	0.352	0.305	0.120	0.110	0.080	0.065	0.050	0.030	0.174	0.164	Full thread	2/3 thread	#2
10	0.500	0.472	0.300	0.130	0.118	0.073	0.049	0.060	0.040	0.197	0.183	Full thread	2/3 thread	#2
	7 1			Jp to 5/8"							+0 / -0.0	03		
Toleran	ce on		Ove	er 5/8 to 1	.5"		+0 / -0.05							
Leng	įth		Ove	r 1.5 to 2.	75"		+0 / -0.06							
			Ove	er 2.75 to	5*						+0 / -0.0	19		

Description	An externally threaded fastener with a dome-shaped head and an integrally formed washer; a recess that can accomodate either a P lips or Square screwdriver; and a single lead thread. The shank has a reduced diameter and a chip cavity cut out where the final sev threads, ending at the tip.							
Applications / Advantages	The deeper thread design offers greater resistance to pull-out forces. The chip cavity (or auger point) enables the fastener to drive— especially in denser woods—without pre-drilling a pilot hole. The head offers a greater bearing surface than a countersunk design. Used to attach surface-mounted door hinges or master lock hasps into dense woods or when attaching two pieces of wood through a pocket hole.							
Material	C1022 case-hardened steel							
Surface Hardness	Rockwell C 45 minimum							
Case Depth	0.004" - 0.009"							
Torque	#8 Diameter: 35 kg/cm minimum #10 Diameter: 50 kg/cm minimum							
Plating See Appendix-A for plating information								



PROJECT: QUAKER C600/C605 W600/W605 Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 18 OF 20

SELF- TAPPING SCREWS

Hex & Hex Washer Heads

HEAD DIMENSIONS

HEX	& HEX WASHER			X WASHER HEADS FOR SELF-TAPPING & SELF-DRILLING SCREWS									ASME B18.6.3— 2013*	
371		A	W		1		F		J		J		r //	
Nominal Size	Width Across Flats		Width Across Corners	Height of Head		Diameter of Washer		Thickness of Washer		Width of Slot		Depth of Slot		
	Max	Min	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	
4	.188	.181	.202	.060	.049	.243	.225	.019	.011	.039	.031	.036	.025	
6	.250	.244	.272	.093	.080	.328	.302	.025	.015	.048	.039	.046	.033	
7	.250	.244	.272	.093	.080	.328	.302	.029	.017	.048	.039	.054	.040	
8	.250	.244	.272	.110	.096	.348	.322	.031	.019	.054	.045	.066	.052	
10	.312	.305	.340	.120	.105	.414	.384	.031	.019	.060	.050	.072	.057	
12	.312	.305	.340	.155	.139	.432	.398	.039	.022	.067	.056	.093	.077	
14	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083	
1/4 standard)	.375	.367	.409	.190	.172	.520	.480	.050	.030	.075	.064	.101	.083	
1/4 (special)	.438	.428	.484	.188	.150	.618	.574	.055	.030	.084	.072	.110	.090	
5/16 (special)	.438	.428	.484	.230	.172	.676	.574	.063	.040	.084	.072	.122	.090	
5/16 standard)	.500	.489	.545	.230	.208	.676	.624	.055	.035	.084	.072	.122	.100	
3/8	.562	.551	.614	.295	.270	.780	.720	.063	.037	.094	.081	.156	.131	
1/2*	.750	.735	.820	.400	.367	1.040	.960	.085	.050	.106	.091	.190	.165	

^{*} Slot dimentions for 1/2-inch diameter hex washer head tapping screws are independient of ASME B18.6.3

PROJECT: QUAKER C600/C605 W600/W605		
Casement Windows	BY: TAD	DATE: 10/17/23
PROJECT NO.: Q5070.01-122-34	CKD: ARK	SHEET: 19 OF 20

ap &	Clearar	nce Dri	ll Sizes		Tap	Drill			Clearar	nce Drill					
Screw Size	Major Diameter	Threads Per Inch	Minor Diameter	Aluminum	read for n, Brass, & stics	Steel, S	read for stainless, Iron	Close	e Fit	Free	e Fit				
				Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. Eq.	Drill Size	Dec. E				
0	.0600	80	.0447	3/64	.0469	55	.0520	52	.0635	50	.0700				
1	.0730	64	.0538	53	.0595	1/16	.0625	48	.0760	46	.0810				
	.0730	72	.0560	53	.0595	52	.0635	40	.0760	40	.0010				
2	.0860	56	.0641	50	.0700	49	.0730	43	.0890	41	.0960				
2	.0000	64	.0668	50	.0700	48	.0760	43	.0070	41	.0700				
3	.0990	48	.0734	47	.0785	44	.0860	37	.1040	35	.1100				
	.0770	56	.0771	45	.0820	43	.0890	3,	.1010						
4	.1120	40	.0813	43	.0890	41	.0960	32	.1160	30	.1285				
		48	.0864	42	.0935	40	.0980								
5	.125	40	.0943	38	.1015	7/64	.1094	30	.1285	29	.136				
		44	.0971	37	.1040	35	.1100		200						
6	.138	32	.0997	36	.1065	32	.1160	27	.1440	25	.149				
		40	.1073	33	.1130	31	.1200								
8	.1640	32	.1257	29	.1360	27	.1440	18	.1695	16	.1770				
		36	.1299	29	.1360	26	.1470								
10	.1900	24	.1389	25	.1495	20	.1610	9	.1960	7	.201				
		32 24	.1517	21	.1590	18 12	.1695								
12	2460	28	.1649	16	.1770	10	.1890	2	.2210	1	.228				
12	.2160	32	.1722	14	.1820	9	.1935	- 2	.2210	'	.220				
		20	.1777	13 7	.1850	7/32	.1960								
1/4	.2500	28	.2062	3	.2130	1	.2280	F	.2570	н	.266				
1/4	.2300	32	.2117	7/32		1	.2280	· '	.2370	"	.200				
		18	.2443	7/32 F	.2188	J	.2770								
5/16	.3125	24	.2614	- 1	.2720	9/32	.2812	Р	.3230	Q	.332				
37 10	.5125	32	.2742	9/32	.2812	L	.2900	' '	.3230	~	.552				
		16	.2983	5/16	.3125	Q	.3320								
3/8	.3750	24	.3239	Q	.3320	S	.3480	w	.3860	X	.397				
		32	.3367	11/32	.3438	T	.3580								
		14	.3499	U	.3680	25/64	.3906				_				
7/16	.4375	20	.3762	25/64	.3906	13/32	.4062	29/64	.4531	15/32	.4687				
		28	.3937	Y	.4040	Z	.4130				007				
		13	.4056	27/64	.4219	29/64	.4531								
1/2	.5000	20	.4387	29/64	.4531	15/32	.4688	33/64	.5156	17/32	.531				
		28	.4562	15/32	.4688	15/32	.4688								
		12	.4603	31/64	.4844	33/64	.5156								
9/16	.5625	18	.4943	33/64	.5156	17/32	.5312	37/64	.5781	19/32	.593				
		24	.5114	33/64	.5156	17/32	.5312	1			l				
		11	.5135	17/32	.5312	9/16	.5625								
5/8	.6250	18	.5568	37/64	.5781	19/32	.5938	41/64	.6406	21/32	.656				
		24	.5739	37/64	.5781	19/32	.5938								
11/16	.6875	24	.6364	41/64	.6406	21/32	.6562	45/64	.7031	23/32	.718				
		10	.6273	21/32	.6562	11/16	.6875								
3/4	.7500	16	.6733	11/16	.6875	45/64	.7031	49/64	.7656	25/32	.781				
		20	.6887	45/64	.7031	23/32	.7188								
13/16	.8125	20	.7512	49/64	.7656	25/32	.7812	53/64	.8281	27/32	.843				
		9	.7387	49/64	.7656	51/64	.7969								
7/8	.8750	14	.7874	13/16	.8125	53/64	.8281	57/64	.8906	29/32	.906				
		20	.8137	53/64	.8281	27/32	.8438								
	.9375	20	.8762	57/64	.8906	29/32	.9062	61/64	.9531	31/32	.968				
15/16	.73/3								3						
15/16	1.000	8	.8466 .8978	7/8 15/16	.8750 .9375	59/64	.9219 .9531	1-1/64	1.0156	1-1/32	1.031				

PROJECT: QUAKER C600/C605 W600/W605			
Casement Windows	BY:	TAD	DATE: 10/17/23
I PROJECT NO ∙ 05070 01-122-34	I CKD:	· ΔRK	SHFFT : 20 OF 20

Revision Log

<u>Rev. #</u>	<u>Date</u>	Page(s)	Revision(s)
0	10/17/23	N/A	Original report issue